
Residue network in protein native structure belongs to the universality class
of a three-dimensional critical percolation cluster

Hidetoshi Morita* and Mitsunori Takano†

Faculty of Science and Engineering, Waseda University, Tokyo 169-8555, Japan
�Received 13 August 2008; published 24 February 2009�

Single protein molecules are regarded as contact networks of amino-acid residues. Relationships between the
shortest path lengths and the numbers of residues within single molecules in the native structures are examined
for various sized proteins. A universal scaling among proteins is obtained, which shows that the residue
networks are fractal networks. This universal fractal network is characterized with three kinds of dimensions:
the network topological dimension Dc�1.9, the fractal dimension Df �2.5, and the spectral dimension Ds

�1.3. These values are in surprisingly good coincidence with those of the three-dimensional critical percola-
tion cluster. Hence the residue contact networks in the protein native structures belong to the universality class
of the three-dimensional percolation cluster. The criticality is relevant to the ambivalence in the protein native
structures, the coexistence of stability and instability, both of which are necessary for protein functions.
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Proteins are one-dimensional chains of amino-acid resi-
dues embedded in three-dimensional �3D� �D=3; 3D� Eu-
clidean space. In a small scale we see covalent bonds of
residues, and in a large scale we see just a 3D object. In the
intermediate scale, we see the residues neighboring in the
Euclidean space contacting with each other. Thus in this
scale, referred to as the network scale in this paper, we can
regard a single protein molecule as a contact network of
residues �1,2�. This network viewpoint, in particular the uni-
versality among proteins, is complementary to the energy
landscape picture �3� in understanding the general nature of
proteins.

Some recent studies �4–8� have applied the latest network
theory to the residue networks. Important quantities to char-
acterize a network are the clustering coefficient C and the
shortest path length L �9�. Those studies have demonstrated
that the residue networks have larger C than the random
network �10�, and smaller L than the normal lattice. This
indicates that the residue networks are small world networks
�SWNs� �11�.

On the other hand, the spacial profile of residues within
single protein molecules has long been studied. Earlier spec-
troscopic studies have shown anomalous density of states
�12�. These results, accompanied with theoretical studies
�13�, have suggested that the protein structures possess the
property of fractal lattices. The fractality within single pro-
tein molecules has also been shown numerically through the
density of normal modes �14–16� and the spatial mass dis-
tribution �17�. This implies that the residue networks are
fractal networks �FNs�.

From a general viewpoint of the network theory, however,
there lies a dichotomy between SWNs and FNs �18�. The
clustering coefficient C cannot discriminate between SWNs
and FNs, since in both networks C has larger values than the
random network. In contrast, the dependence of the shortest

path length L on the number of nodes N is essentially differ-
ent between SWNs and FNs; L depends on N logarithmically
and algebraically, respectively. By exploiting the N depen-
dence of L, we could differentiate SWNs and FNs, in
principle.

In proteins, nevertheless, it is practically difficult to
clearly distinguish between these two N dependencies. This
is because the size of proteins does not distribute widely
enough to cover sufficient decades. The same data sets can
be read as a straight line both in semilog �SWN� and log-log
�FN� plots.

To overcome this practical difficulty, here we introduce a
more sophisticated method. Instead of the N-L plot among
various sized proteins, we investigate an equivalent within
single protein molecules; we calculate the number of nodes
nl that can be reached until the lth path step. By overdrawing
the nl-l plot for various sized proteins, we find a region of
asymptotic universal scaling. We thereby conclude that the
residue networks in the protein native structures are FNs, not
SWNs. This is the first result of this paper.

We then obtain three characteristic dimensions of FNs;
the network topological dimension Dc, the fractal dimension
Df, and the spectral dimension Ds. Their values are shown to
be universal among single-chain proteins. Furthermore, these
three values surprisingly coincide with those of the 3D criti-
cal percolation cluster. Namely, proteins belong to the uni-
versality class of the 3D critical percolation cluster. This is
the second and the most highlighted result of this paper.

First of all, we define the network for a protein native
structure. We use the spatial information of the native struc-
ture in the Protein Data Bank �PDB� �19�. We regard amino-
acid residues as nodes; they are symbolized by C� atoms,
which is a standard way in coarse grained models �2�, and is
indeed employed in the past studies on networks �4,5,7,8�. A
pair of nodes, i and j, is considered to have an edge if their
Euclidean distance dij is less than a cutoff distance dc. Then
the network is represented by an adjacency matrix,

A = �Aij�, Aij = ��dc − dij� , �1�

where ��·� is the Heaviside step function. Here we adopt
dc=7 Å, which corresponds to the second coordination shell
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in the radial distribution function of C�; we have also con-
firmed that the result below is robust to the choice of dc from
6 to 10 Å �20�.

Let nl
�i� be the number of nodes that a walker on the net-

work starting from the node i can visit at least once until the
lth step. Since we are interested in the overall network prop-
erties of a protein molecule, we take the average, nl

=�inl
�i� /N. As l becomes larger, nl monotonically increases,

and finally saturates at N. In the D-dimensional normal lat-
tice, nl� lD. Similarly, in a FN, the power-law scaling,

nl � lDc, �2�

holds, where Dc is referred to as the network topological
dimension �21,22�. In a SWN, in contrast, the small-world
scaling �18�,

nl � exp�l/l0� , �3�

holds, with a positive constant l0. Note again that the rela-
tionships �2� and �3� are essentially different, leading to the
dichotomy between FNs and SWNs �18�.

Figure 1 shows nl vs l in �a� a log-log and �b� a semilog
plot. We present the data for five representative proteins of
different size: ribonuclease T1 �PDB ID=9RNT, 104 amino
acids �a.a.��, cutinase �1CUS, 200 a.a.�, green fluorescent
protein �1EMA, 236 a.a.�, actin �1J6Z, 375 a.a.�, and sub-
fragment 1 of myosin �1SR6, 1152 a.a.�. In Fig. 1�a�, the
scaling range tends to extend as the number of nodes N in-
creases. This suggests the existence of an asymptotic univer-
sal scaling in the network scale. In Fig. 1�b�, on the contrary,
we cannot see such an asymptotic behavior. Thus we infer
that proteins as residue networks universally obey the power-
law scaling �2� with Dc�1.9. This provides evidence that the
networks in protein native structures are FNs, not SWNs.

In much larger proteins, Dc’s are often a bit larger than
1.9, or even the power-law scaling itself is smeared. This is
because larger proteins are usually not single-domain nor
single-chain but multidomain or multichain proteins. Even in
such proteins, however, each single-domain or single-chain
component still yields the same scaling with the same dimen-
sion, Dc�1.9 �20�.

One plausible reason why the residue network is not a
SWN but a FN is that the nodes are spatially restricted in the
3D Euclidean space, and therefore cannot have long-range

edges. Long-range edges are important for SWN, as the
Watts-Strogatz model �11� typically demonstrates. Indeed,
some other real networks with spatial �geographical� restric-
tion tend to be regular �including fractal� networks rather
than SWNs �18�.

Besides the above network topological dimension Dc, a
FN is characterized in general by two other dimensions: the
fractal dimension Df and the spectral dimension Ds �21�.
While these three dimensions and the Euclidean dimension
D are identical in the normal lattices, they can be different in
FNs. We obtain the rest of the two dimensions in the
following paragraph.

The fractal dimension is obtained from the spatial distri-
bution of nodes. Here we again employ the method within
single protein molecules, differently from the previous stud-
ies �17�, in order to discuss the asymptotic scaling in the
network scale. Let n�i��d� be the number of nodes, the dis-
tance of which from the node i is less than d; n�i��d�
=� j��d−dij�. Since we are interested in the overall network
property of a protein molecule, we take the average, n�d�
=�in

�i��d� /N=�i� j��d−dij� /N. Note that this is nothing but
the unnormalized correlation integral �23�. As d becomes
larger, n�d� monotonically increases, and finally saturates at
N. In the D-dimensional normal lattice, n�d��dD. Similarly,
in a FN, the power-law scaling,

n�d� � dDf , �4�

holds, where Df is referred to as the fractal dimension.
Figure 2 shows n�d� vs d in log-log scale, for the same

proteins as Fig. 1. Similarly to Fig. 1, the scaling range tends
to extend as the number of nodes N increases. This suggests
the existence of an asymptotic universal scaling in the net-
work scale. Thus we infer that proteins as residue networks
universally obey the power-law scaling �4� with Df �2.5;
this value is consistent with previous results �17�.

The spectral dimension is obtained from the density of
normal modes �DNM�. According to the Debye theory, DNM
in a D-dimensional normal lattice is ������D−1. Similarly,
DNM in FN obeys the power-law scaling

���� � �Ds−1, �5�

where Ds is referred to as the spectral dimension �22�.
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FIG. 1. �Color online� Averaged number of nodes nl that a
walker on the network starting from a node can visit at least once
until the lth step; �a� log-log and �b� semilog plots.
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FIG. 2. �Color online� Averaged number of residues n�d�, the
distance of which from a residue is less than d for the same proteins
as Fig. 1.
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DNM is, in general, obtained experimentally by spec-
troscopies and numerically by normal mode analysis �NMA�.
To be relevant to experiments, we conduct NMA in an all
atom model, not in a coarse grained one. Then, by focusing
on the frequency region corresponding to residue-residue in-
teractions, we consider the spectral dimension of the residue
network. We do so because for NMA it is necessary to take
the interaction strengths precisely into account. In the all
atom model, the interaction strengths are quite reliable, since
it is basically obtained from quantum chemical calculations.
In a coarse grained model, in contrast, the interaction
strengths are introduced rather arbitrarily. It is true that
coarse grained models well reproduce the overall fluctuation
around the protein native structure �2�. This is, however,
largely due to the fact that only a limited number of lowest
frequency normal modes �or largest amplitude principal
components� dominate the fluctuation. There is no guarantee
that they also reproduce DNM for decades of frequency. In-
deed, it has been reported that there is an essential difference
in DNM between the all atom model and the coarse grained
model with identical interaction strengths �24�. Instead, here
we coarse grain DNM itself, by truncating the higher fre-
quency region. We perform NMA by using the program
NMODE implemented in the AMBER software �25�, with the
AMBER force field �perm99� and implicit water �Generalized
Born� models. Before NMA, energy minimization is ex-
ecuted with the Newton-Raphson and conjugate gradient
methods, so that the norm of the force is less than the order
of 10−12 kcal mol−1 Å−1.

Figure 3 shows typical DNMs among several proteins in-
vestigated; these are essentially similar to one of the previous
studies �16�. There exist two shoulders at around 10 and
100 cm−1, respectively, denoted by �FS and �GL. The fre-
quency higher than �GL corresponds to motions due to
covalent-bond stretching and angle bending motions. The
frequency lower than �GL, in contrast, corresponds to mo-
tions due to residue-residue interactions that we are now in-
terested in. In this region, i.e., the network region, DNMs
universally obey the power-law scaling �5� with Ds�1.3. At
around �FS, the dimension changes from 1.3 to 3.0. This is
due to finite size effects; through a long wavelength probe, a
protein is regarded just as a 3D object. Indeed, a similar
change in slope due to finite size effects is observed in per-

colation clusters �22�. We expect that in much larger proteins
�FS should shift to lower frequencies, and accordingly the
region of Ds�1.3 becomes wider. Thus we infer that pro-
teins as residue networks universally follow the power-law
scaling �5� with Ds�1.3.

We discuss the reason why some of the previous studies
�14,15� gave Ds larger than 1.3. In these studies, Ds was
obtained not from DNM ���� but from its cumulative distri-
bution ����=�0

�d�������. Ds’s obtained from ���� and
���� are identical if a single scaling holds over the whole
range considered. In proteins, however, the scaling changes
at around �FS due to finite size effects, which leads to an
illusionary larger value of Ds. To illustrate this simply, we
model the density function as a function that sharply changes
the scaling at �FS:

���� = 	
C

�FS

 �

�FS
�D−1

�� � �FS� ,

C

�FS

 �

�FS
�Ds−1

�� � �FS� ,� �6�

where C is a dimensionless positive constant. Its cumulative
distribution is

���� = 	
C

D

 �

�FS
�D

�� � �FS� ,

C

Ds

 �

�FS
�Ds

− 
1 −
Ds

D
�� �� � �FS� .� �7�

The gradient of log � to log � gives a larger value than the
correct spectral dimension Ds at around �	�FS. The gradi-
ent would yield Ds in the region � /�FS
 �1−Ds /D�1/Ds. In
proteins, D=3 and Ds=1.3, then � /�FS
0.56. This region,
however, corresponds to the motions of covalent bonds, not
to the motions of residue-residue interactions in which we
have found the universality.

In conclusion, we have unveiled the existence of the uni-
versal FN inherent in the protein native structures in the net-
work scale. We have obtained its characteristic dimensions
�D ,Dc ,Df ,Ds�= �3,1.9,2.5,1.3�. Note that these dimensions
are in surprisingly good coincidence with those in the 3D
critical percolation cluster, �D ,Dc ,Df ,Ds�
= �3,1.885,2.53,1.3� �21,26�. Hence we here propose that
the protein native structures belong to the universality class
of the 3D critical percolation cluster. This is the main state-
ment of this paper.

Then why are the residue networks critically percolated?
Although it is difficult to give a complete answer in the
present stage of this study, still we can provide a purposeful
explanation by pointing out two important aspects of pro-
teins: stability and instability. Proteins are stable, in that they
keep their own almost unique native structures, which is nec-
essary for robust molecular recognition in cells. Proteins are
unstable, on the other hand, in that they change their struc-
tures flexibly, in particular to work as molecular machines or
allosteric enzymes. The coexistence of these two conflicting
aspects is essential for functions of proteins. Being in the
critical state of the percolation transition is sufficient for ful-
filling these two conflicting aspects. Indeed, recall that the
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FIG. 3. �Color online� Density of normal modes ���� of �a�
ribonuclease T1 �PDB ID=9RNT� and �b� cutinase �1CUS�. Vari-
ous bin sizes �� are taken �=1 �red plusses�, 2 �green times sym-
bols�, 5 �blue circles�, and 10 cm−1 �magenta square�� so as to dis-
play the master curve more clearly.
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percolation transition occurs as the density of nodes in-
creases �21�. At low densities, the network is not percolated
but parted, thereby the protein could not keep the native
state. At high densities, the network is too much developed,
thereby the protein would be too stiff to make a structural
change. Furthermore, the criticality can be even necessary;
proteins should evolve toward the critical state �27,28�. This
hypothesis should be verified through molecular evolution-
ary studies, which is a challenging subject in the future.

The criticality in the percolation transition is likely to be
relevant to the marginal stability of the native state in the
folding-unfolding transition. Criticality means little curva-
ture of free energy, which implies a shallow basin of and

accordingly a low energy barrier from the native state. Such
a free energy landscape can lead to large structural changes,
including the folding-unfolding transition, without difficulty,
which indicates the marginal stability of the native structure.
In fact, it has been reported that free energy barriers to large
scale structural change are quite low �29�, which is consistent
with the above picture of free energy as a consequence of the
critical percolation that we have discovered in this paper.
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